GB Syndrome

Dr. Jasodhara Chaudhuri Assistant Professor, Dept. of Neuromedicine NRS MCH, Kolkata

Panelists

- Prof Dr Swapan Ray
- Dr Arijit Chatterjee
- Prof BK Ray
- Prof Dr Subhasis Bhattacharya

GB Syndrome (Guillain-Barré syndrome)

• Acute inflammatory polyneuropathy.

• Most common cause of acute/subacute generalized paralysis in clinical practice.

• Rapidly progressive, symmetric, ascending weakness (in majority) with areflexia.

• Usually preceded by a mild RTI, GI infection, or immunization 1-3 weeks before the neurologic symptoms.

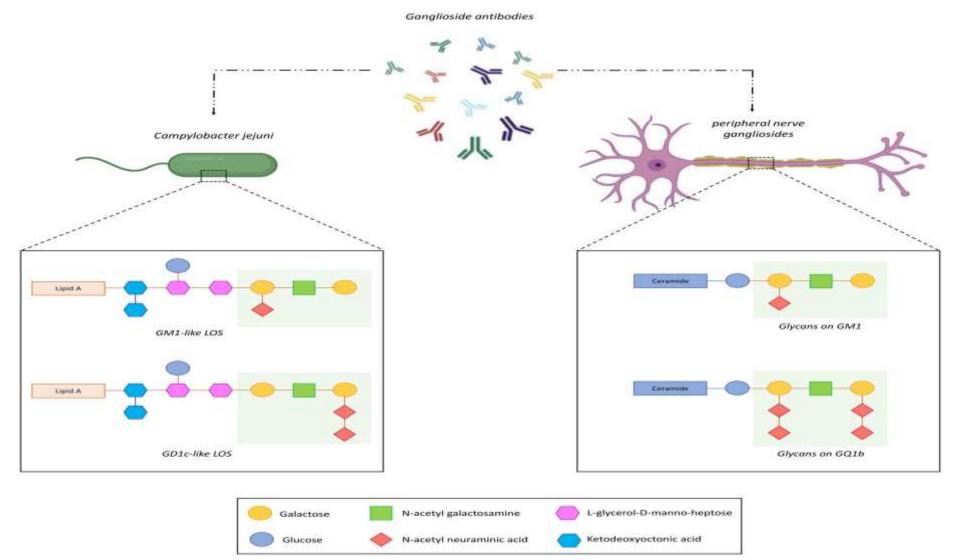
Infections Preceding GBS

Preceding Infections

✓ 90%+ of GBS cases follow a respiratory or gastrointestinal infection

🛃 Campylobacter jejuni (C. jejuni)

✓ Most common bacterial trigger of GBS


 \checkmark Up to 30% of GBS cases linked to C. jejuni

GBS Risk After C. jejuni

 \checkmark 1 in 1000 infected individuals develop GBS

Symptom Onset

✓ Median: 10 days post-diarrhea (Range: 3 days – 6 weeks)

Lipo-oligosaccharide (LOS) on the outer membrane of Campylobacter jejuni induces cross-reactive antibodies which, through molecular mimicry, bind to the structurally identical glycans (areas in green) present on peripheral nerve gangliosides (GM1 and GQ1b in the example above), resulting in damage to axons and Schwann cells

Euro J of Neurology, Volume: 31, Issue: 8, First published: 30 May 2024, DOI: (10.1111/ene.16365)

Other Infections Linked to GBS

Bacterial & Viral Triggers

✓ Bacteria: Haemophilus influenzae, Mycoplasma pneumoniae

✓ Viruses: Cytomegalovirus, Epstein–Barr virus, Varicella zoster virus

Q Asymptomatic Infections

✓ Some GBS patients **show no prior symptoms**

✓ 50% of C. jejuni infections are asymptomatic

★ Key Takeaway:

✓ GBS may follow **various infections**, even without visible symptoms

Non-Infective Associations with GBS

Medical Triggers

✓ **Parenteral gangliosides** (used for peripheral neuropathy)

✓ Vaccines \rightarrow Potential molecular mimicry

Other Associations

- ✓ Autoimmune diseases (e.g., lupus)
- ✓ Immunosuppressive drugs (e.g., anti-TNFα therapy)
- ✓ Surgery \rightarrow May increase susceptibility to infections

Vaccines & GBS

Possible Links

✓ H1N1 & seasonal flu vaccines → Slight risk (~1 case per million)

✓ Adenovirus-based COVID-19 vaccines → Rare association


 \bigcirc Low or No Risk

✓ mRNA COVID-19, Hepatitis B, MMR, HPV, tetanus → No strong evidence

★ Key Takeaway:

✓ Vaccine-related GBS is **extremely rare**, and infections pose a **higher risk**.

Pathophysiology in GBS

G Key GBS Features

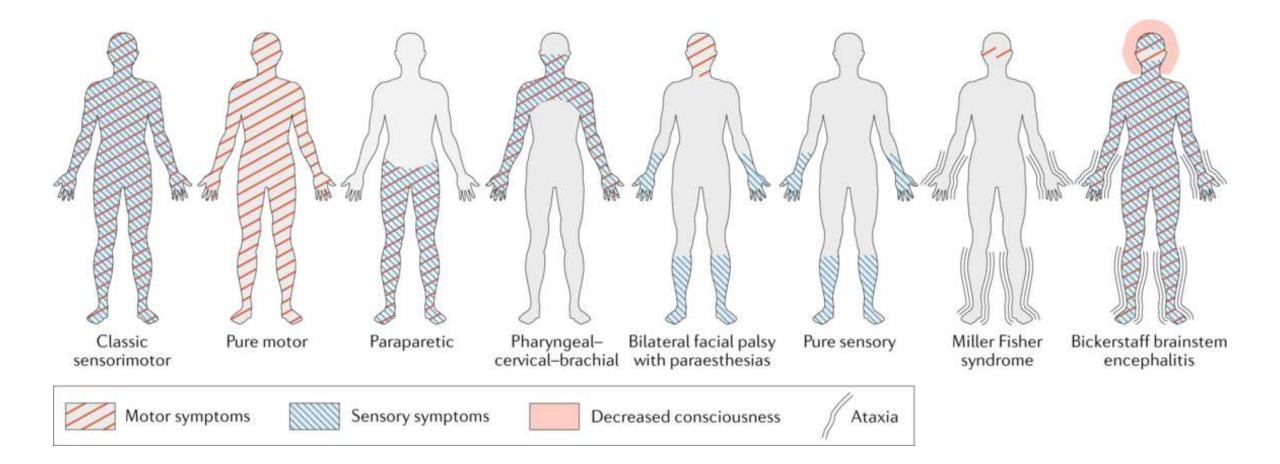
- **V** Symmetric limb weakness (sometimes asymmetric/unilateral)
 - ✓ Classic GBS: Bilateral limb weakness, often with bifacial weakness
 - ✓ Ascending weakness, possible respiratory & cranial nerve involvement
 - \checkmark 10% may have normal/exaggerated reflexes

MFS (Miller Fisher syndrome) Features

- **Vophthalmoplegia, ataxia, areflexia** (no limb weakness)
 - ✓ Bickerstaff's Brainstem Encephalitis (BBE): MFS + hypersomnolence
 - ✓ Incomplete MFS: May lack ophthalmoplegia or ataxia

AC

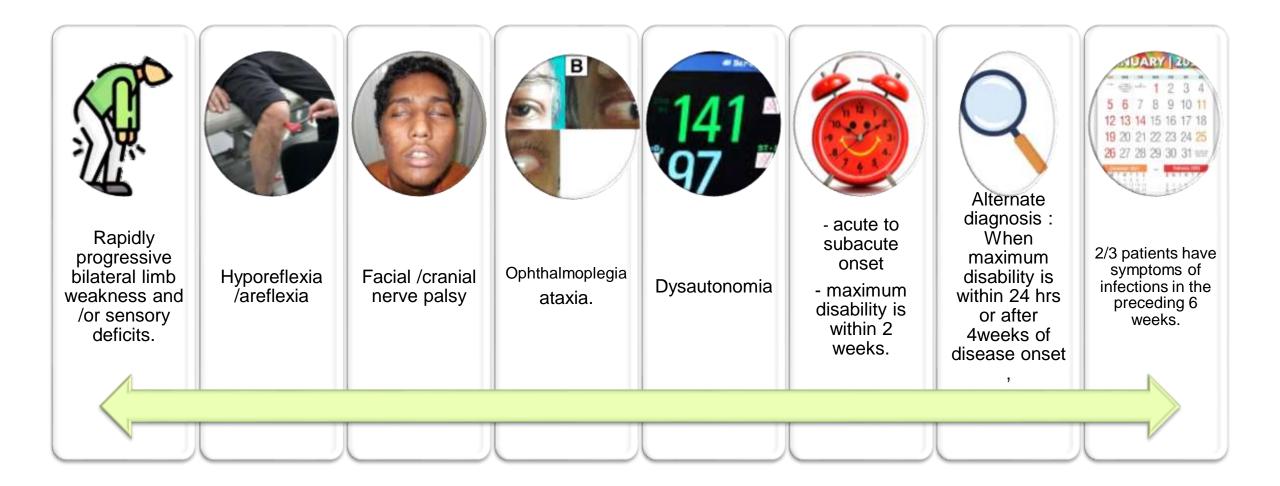
Subtypes & Overlaps


✓ MFS/BBE + limb weakness → Overlap with GBS

✓ GBS with ophthalmoplegia/ataxia → Overlap with MFS

✓ Pharyngeal-cervical-brachial (PCB) weakness + ataxia → Overlap with GBS/MFS subtypes

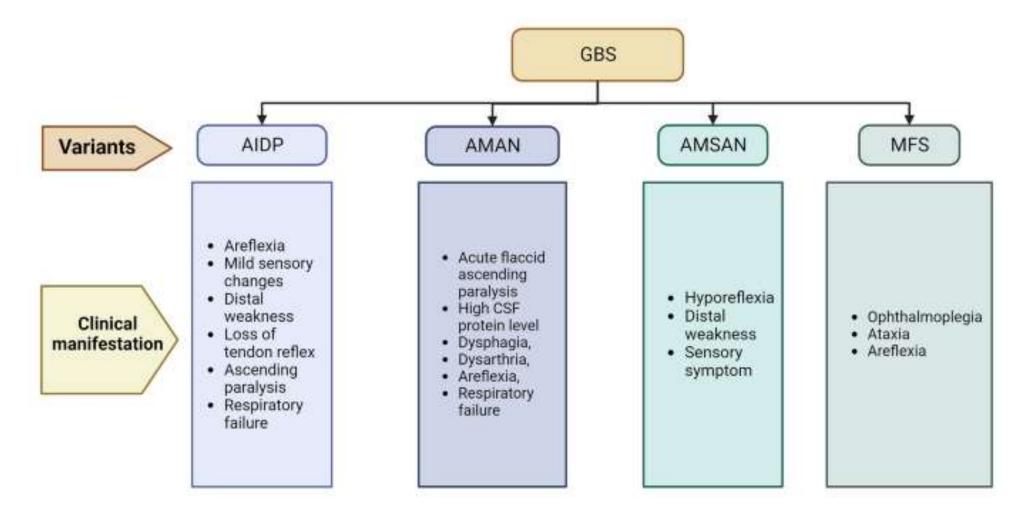
BKR


Guillain-Barré syndrome: Differentials

BKR

Nerve / nerve root	Muscle	Neuromuscular junction	Spinal cord	Higher CNS diseases
J.				
Acute onset CIDP	Hypokalaemic Periodic Paralysis	Myasthenia Gravis	Acute transverse myelitis	Brainstem stroke
Autoimmune nodopathy	Acute viral myositis	LEMS	MOGAD-related conus medullaris syndrome	Rhombencephalitis
Vasculitic neuropathy	Acute colchicine myopathy	Botulism		Wernicke's encephalopathy
Haematological malignancy / carcinomatosis with nerve root infiltration		Organophosphate intoxication		
Acute infection / HIV seroconversion				
Acute intermittent porphyria				
Nutritional (thiamine deficiency)				
Heavy metals poisoning				

The 10 steps


Step 1: When to Suspect? SR

Atypical clinical presentation :

- Weakness and sensory signs could be asymmetrical or predominantly proximal or distal.
- Severe and diffuse pain or isolated cranial nerve dysfunction can precede the onset of weakness.
- In minority of patient particularly those with pure motor variant and an AMAN subtype might have normal or even exaggerated reflexes.

GBS variants and Clinical manifestations

Variant	Frequency (% of GBS cases)*	Clinical features	
Classic sensorimotor GBS ^b	30–85	Rapidly progressive symmetrical weakness and sensory signs with absent or reduced tendon reflexes, usually reaching nadir within 2 weeks	
Pure motor ^c	5–70	Motor weakness without sensory signs	
Paraparetic	5–10	Paresis restricted to the legs	
Pharyngeal–cervical– brachial	<5	Weakness of pharyngeal, cervical and brachial muscles without lower limb weakness	
Bilateral facial palsy with paraesthesias ^d	<5	Bilateral facial weakness, paraesthesias and reduced reflexes	
Pure sensory ^d	<1	Acute or subacute sensory neuropathy without other deficits	
Miller Fisher syndrome	5–25	Ophthalmoplegia, ataxia and areflexia. Incomplete forms with isolated ataxia (acute ataxic neuropathy) or ophthalmoplegia (acute ophthalmoplegia) can occur ³¹ . Overlaps with classical sensorimotor GBS in an estimated 15% of patients	
Bickerstaff brainstem encephalitis ^d	<5	Ophthalmoplegia, ataxia, areflexia, pyramidal tract signs and impaired consciousness, often overlapping with sensorimotor GBS	

Step 2 : How to diagnose?

- There are several published sets of criteria for the diagnosis of GBS, of which the most frequently used are
- The NINDS criteria revised by Asbury and Cornblath (1990)
- The Brighton Collaboration Consensus Criteria (2011)
- The Wakerley and Yuki (2015) criteria
- The consensus guideline by Leonhard et al. (2019)

Clinical

Investigations


AC +BKR

National Institute of Neurological Disorders and Stroke (NINDS) GBS diagnostic criteria

Required Features	Supportive Features	
 Progressive weakening of the trunk, bulbar, and face muscles as well as external ophthalmoplegia, ranging from mild weakness of the legs to complete paralysis of all four limbs Weak limbs with areflexia or hyporeflexia 	 From days to four weeks, symptoms progress Symptoms are bilateral and symmetrical in nature. Pain in the trunk or limbs Cranial nerve symptoms or signs failure of the autonomic system A mild form of sensory dysfunction No fever at symptom onset CSF with normal to mildly raised leukocyte count (typically 5 cells/mm3) and high protein. Anomalies on the electrodiagnostic screen that are GBS-relatedRecovery starting two to four weeks after progression halts 	

European Academy of Neurology/Peripheral Nerve Society Guideline on diagnosis and treatment of GBS (2023)

Diagnosis and classification of GBS

Lab investigations:

 Help to exclude other causes of acute flaccid paralysis such as infections or metabolic or electrolyte dysfunctions (Hypokalemia, Hypomagnesemia, Hypophosphatemia etc.).

CSF examinations :

- Done when the diagnosis is uncertain or when an alternative diagnosis needs to be excluded.
- Classic finding is albumino-cytological dissociation.
- However it could be normal in about 30-50% of patients in the first week and 10-30% in the second week.
- Usually <5 cells/μL, rarely 5–50 cells/μL
- CSF cells >50 cells/µL : May be alternative diagnosis

Electrodiagnostics:

- Early Electrodiagnostic Features of GBS
- **High Sensitivity, Low Specificity** Supportive but not definitive
- Sindings:
- **Polyneuropathy** Sensory and/or motor conduction abnormalities
- Absent H-reflexes Common early sign
- Facial Nerve Involvement \uparrow Distal motor latency / \downarrow CMAP amplitude
- Blink Reflex Abnormalities Absent or prolonged R1, R2 responses

Electrodiagnostic Features Supporting GBS Diagnosis

\\$ Low to Moderate Sensitivity, High Specificity

 \checkmark Key Findings:

- Sural Sparing Pattern Abnormal median/ulnar SNAP with normal sural SNAP
- Indirect Discharges Multiple A-wave-like responses
- Prolonged Distal CMAP Duration >8.5 ms

Ø Findings Against GBS:

Presence of H-reflexes

★ Additional Notes:

- Normal NCS early on **does not exclude GBS** Repeat testing may be needed
- Miller Fisher Syndrome (MFS) Clues:
 - Sural sparing
 - Polyneuropathy-like conduction abnormalities

Role of MRI & Ultrasound in GBS Diagnosis

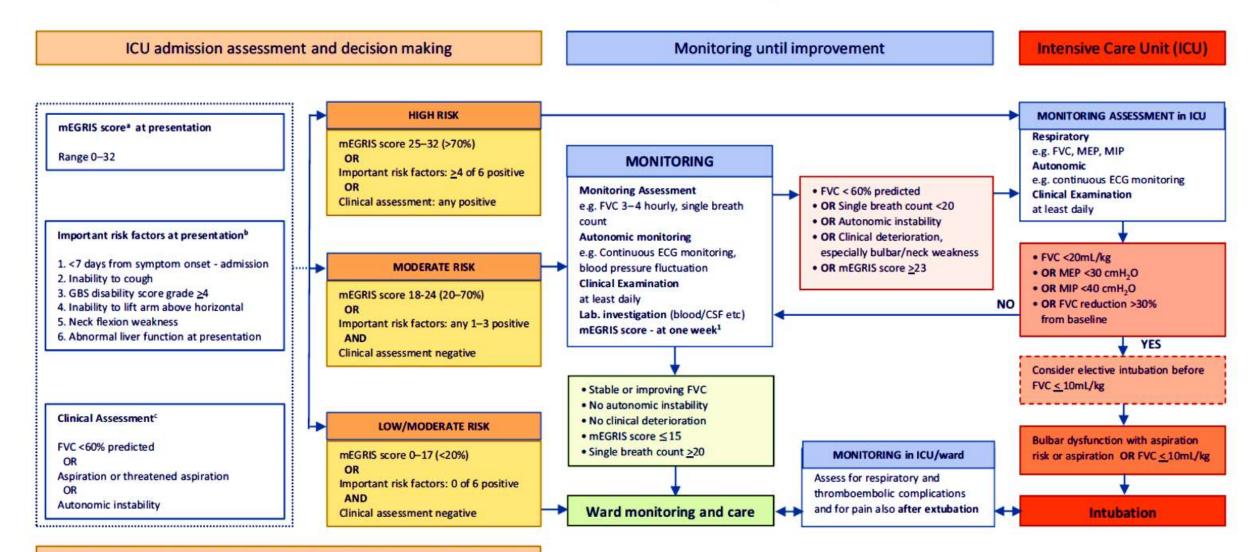
Not Recommended for Routine Use

When to Consider:

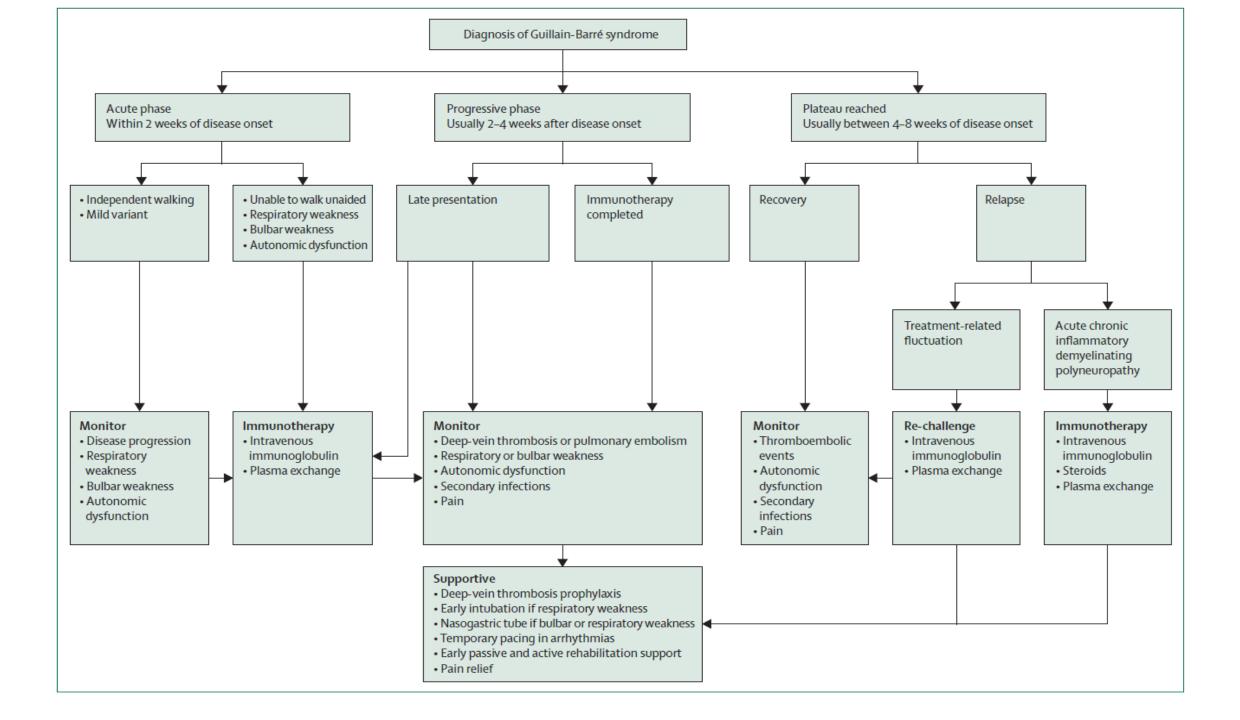
Atypical cases – May help differentiate GBS from mimics

★ Key Findings:

MRI Nerve Root Enhancement – Supports GBS but not exclusive


Widespread Nerve Enlargement (US/MRI) – Suggests A-CIDP but not definitive

Whole Spine MRI with Contrast – Helps rule out spinal cord compression, transverse myelitis, tumors


Step 3 : When to refer and admit in ICU?

SB

Assessment and monitoring of GBS

Additional adverse risk conferred at any stage by abnormal Chest X-Ray, abnormal liver function, or evidence of CMV or other infection^d

Box 3 | Erasmus GBS Respiratory Insufficiency Score

The Erasmus Guillain-Barré syndrome (GBS) Respiratory Insufficiency Score (EGRIS) calculates the probability that a patient with GBS will require mechanical ventilation within 1 week of assessment and is based on three key measures. Each measure is categorized and assigned an individual score; the sum of these scores gives an overall EGRIS for that patient (between 0 and 7). An EGRIS of 0-2 indicates a low risk of mechanical intervention (4%), 3-4 indicates an intermediate risk of mechanical intervention (24%) and \geq 5 indicates a high risk of mechanical intervention (65%). This model is based on a Dutch population of patients with GBS (aged >6 years) and has not yet been validated internationally. Therefore, it may not be applicable in other age groups or populations. An online resource that automatically calculates the EGRIS for a patient based on answers to a series of questions has been made available by the International GBS Outcome Study (IGOS) consortium (see Related links). The Medical Research Council (MRC) sum score is the sum of the score on the MRC scale for: muscle weakness of bilateral shoulder abduction; elbow flexion; wrist extension; hip flexion; knee extension; and ankle dorsiflexion. A higher MRC sum score denotes increased disability, up to a maximum score of 60.

Measure	Categories	Score
Days between onset of weakness and hospital admission	>7 days	0
	4–7 days	1
	≤3 days	2
Facial and/or bulbar weakness at hospital admission	Absent	0
	Present	1
MRC sum score at hospital admission	60–51	0
	50-41	1
	40-31	2
	30-21	3
	≤20	4
EGRIS	NA	0-7

NA, not applicable. Adapted with permission from REF.⁷⁴, Wiley-VCH.

Indicators for Urgent Intubation in GBS in Children

Key Parameters:

- Vital Capacity ≤ 20 mL/kg
- Max Inspiratory Pressure > -30 cmH20
- Max Expiratory Pressure ≤ 40 cmH2O
- Tidal Volume < 5 mL/kg

Respiratory Monitoring in Young Children

▲ Challenges in Children <6 Years – PFTs may be unreliable

- **Warning Signs:**
- $paCO_2 \ge 50 \text{ mmHg}$
- Respiratory Rate & Oxygen Need
- Accessory Muscle Use & Paradoxical Breathing
- Sweating, Wide Pulse Pressure, Bounding Pulses

Ventilatory Management Considerations

Searly Pediatric Critical Care Involvement

Avoid Sedation & Neuromuscular Blockade unless absolutely necessary – Masks progression

Airway Care & Chest Physiotherapy – Prevents pneumonia

▲ Tracheostomy may be needed for prolonged ventilation

Step 4 :When to start treatment?

SR

Indications for treatment in children :

IVIG and plasma exchange for children with GBS should be reserved for those with any of the following indications :

- Progressing weakness
- Worsening respiratory status or need for mechanical ventilation
- Significant bulbar weakness
- Inability to walk unaided

when to start treatment in adolescents?

One or more :

- 1. Inability to walk >10 m independently.
- 2. Rapid progression of weakness
- 3. Severe autonomic or swallowing dysfunction.
- 4. Respiratory insufficiency.

Dilemma		Current personal view
Start of treatment	Time window	Treatment should be initiated as soon as possible after diagnosis to prevent further nerve damage (LOE: 3). The effect of IVIg started after 2 weeks and of PE after 4 weeks onset of weakness is unknown (LOE: 4).
	Mild forms	Consider treating mildly affected patients with a rapidly progressive course or with additional features such as autonomic dysfunction, bulbar or facial weakness (LOE: 2).
	Variants	Patients with typical MFS likely require supportive care only (LOE: 3). In complicated MFS (limb weakness, bulbar weakness) and BBE, treatment with IVIg or PE should be considered (LOE: 4). Other GBS variants should be treated according to local guidelines until results of specific treatment trials show otherwise (LOE: 4).
	Children	Treatment with IVIg is beneficial in children and IVIg is preferred over PE because it is easier to administer (LOE: 2).
Repeat or change of treatment	Insufficient clinical response	There is not enough evidence that switching to IVIs after PE is effective in patients who are severely affected (LOE: 2). IVIg followed by PE should probably be avoided (LOE: 4). The effect of a 2nd IVIg course in patients with a poor prognosis is currently investigated.
	TRF	Although there are no RCTs, there is some rationale to re-treat patients who experience a TRF with either IVIg or PE (LOE: 4). When a patient develops 3 or more TRFs or deteriorates 8 weeks after onset, A-CIDP should be considered.

Table 2: Treatment dilemmas in GBS and recommendations

A-CIDP = acute-onset CIDP; BBE = Bickerstaff's brainstem encephalitis; GBS = Guillain-Barré syndrome; IVIg = intravenous immunoglobulin; LOE =level of evidence; MFS = Miller Fisher syndrome; PE= plasma exchange; RCT = randomised controlled trial; TRF= treatment-related fluctuation.

Adapted from: C. Verboon, PA van Doorn, BC Jacobs. J Neurol Neurosurg Psychiatry 2017;88:346-352

Step 5 : treatment options AC + BKR

- Intravenous immunoglobulin (0.4g/kg daily for 5 days)
- Plasma exchange (200-250ml/kg for 5 sessions).
- IVIg is effective when started within 2 weeks of disease onset and plasma exchange when started within 4 weeks.
- Because of evidence of complement activation in pathogenesis of GBS, effect of eculizumab was investigated (JET-GBS);2018, a small RCT study which did not show significant difference in the endpoint. It however indicated that Eculizumab potentially may be an effective treatment.

	Specific patient groups
GBS variant	 Pure MFS tend to have a relatively mild disease course and tends to recover with in 6 months hence not recommended, but requires close monitoring. Severity of disease course in BBE justifies treatment with IVIg. For other variants no evidence regarding treatment is currently available.
Pregnant women	Neither IVIg nor PE is contraindicated
Children	Same as in adults.

IVIG & Plasma Exchange in Pediatric GBS

Not Recommended for Mild Cases:

- Ambulatory children
- •Mild, nonprogressive, or stabilized symptoms
- Consider Treatment If:
 - •Rapid progression within 1–2 weeks, even if stabilized
 - •Inability to walk unaided
- Timing Matters:
 - •IVIG: Best within 2–4 weeks of onset

•Plasma Exchange: Best within 4 weeks if unable to walk

IVIG vs. Plasma Exchange in Pediatric GBS

- ♦ IVIG Preferred Safer & easier to administer
- No Clear Superiority Limited high-quality data
- Study Findings (Egypt, 41 Children):
- No difference in ICU stay or walking unaided at 4 weeks
- Plasma Exchange \rightarrow Shorter ventilation duration (11 vs. 13 days)
 - Adults: IVIG & Plasma Exchange are equally effective

IVIG in Pediatric GBS

& Efficacy:

- •IVIg shortens recovery time compared to supportive care.
- •Small trials and observational studies suggest faster recovery.
- •Similar beneficial effects seen in adults with GBS.

Recovery Timeline:

- Muscle strength improves within 14 days; most walk within 3 months.
- Early transient relapse may occur after treatment.

✤ Dosage:

- •2 g/kg total, either over 2 days (1 g/kg/day) or 5 days (400 mg/kg/day).
- Based on treatment for immune deficiency disorders.
- Evidence for second course is limited, but may help in treatment-related fluctuations.

Plasma Exchange in Pediatric GBS

Constant Efficacy:

•Superior to supportive care in adults and children \geq 10 years.

•Best if started within 7 days of symptom onset.

•Benefits: Faster recovery of muscle strength, reduced need for ventilation.

***** Mechanism:

Removes antibodies attacking nerves from the circulation.

Procedure:

•Requires special equipment and trained personnel.

•4-6 double-volume exchanges over 1 week.

•Cumbersome for children < 2yrs old .

Complications:

• Risk of citrate-induced hypocalcemia, vascular catheter issues, or infection.

•Younger children may need central venous catheter placement.

Step 6: monitoring disease progression SB

- Regular assessment :
- Respiratory function measurement usage of accessory respiratory muscle , counting during expiration of one full capacity inspiratory breath, vital capacity, maximum inspiratory and expiratory pressure(20/30/40)
- 2. Muscle strength in the necks, arms and legs using MRC grading scale and functional disability using GBS disability scale.
- 3. Monitor for swallowing and coughing difficulties
- 4. Autonomic function

Guillain-Barré syndrome (GBS) Disability Score

The Guillain-Barré syndrome (GBS) disability score is a widely accepted scoring system to assess the functional status of patients with GBS. It was originally described in Hughes et al. (1978) and since then, various iterations have appeared in the literature. The adaptation best suited for use in the *Criteria* and BloodSTAR is from van Koningsveld et al (2007). The *Criteria* requires that the patient's level of disability be documented using the scale from 0 to 6 as below.

Guillain-Barré syndrome disability scale

Score	Description
0	A healthy state
1	Minor symptoms and capable of running
2	Able to walk 10m or more without assistance but unable to run
3	Able to walk 10m across an open space with help
4	Bedridden or chairbound
5	Requiring assisted ventilation for at least part of the day
6	Dead

EGRIS Kids score

EGRIS-Kids for predicting respiratory failure in children with GBS.

Predictors at hospital admission	Categories	Score
Age (years)	≤5	0
	6-10	1
	11-17	2
Cranial nerve involvement	Absent	0
	Present	3
GBS disability score	1	1
	2	2
	3	3
	4	4
EGRIS-Kids		1-9

EGRIS-Kids = Erasmus GBS Respiratory Insufficiency Score for children.

Step 7 : managing early complication AC+BKR

Complication	When to be alert	
Choking	Bulbar palsy	
Cardiac arrhythmias	All patients	
Hospital-acquired infections (e.g., pneumonia, sepsis or urinary tract infection)	Bulbar and facial palsy, immobility, bladder dysfunction, mechanical ventilation	
Pain and tactile allodynia	Limited communication	
Delirium	Limited communication	
Depression	Limited communication	
Urinary retention	All patients	
Constipation	Immobility	
Corneal ulceration	Facial palsy	
Dietary deficiency	Bulbar and facial palsy	
Hyponatraemia	All patients	
Pressure ulcers	Immobility	
Compression neuropathy	Immobility	
Limb contractures and ossifications	Severe weakness for prolonged period of time	

Table 2 | Important complications of Guillain–Barré syndrome

Important complications of Guillain–Barré syndrome (GBS)⁷². Most of these complications can occur in any patient with GBS, at any time, but the second column shows when they are most likely to occur and/or when to be especially alert.

Step 8 : Managing clinical progression SR

Insufficient response to the treatment:

About 40 % of patients treated with standard doses of PE or IVig do not improve , it does not imply that the treatment is ineffective.

Observational study - the non randomised ISID study(oct 2019), second IVIg in patient with poor prognosis did not show better outcome.

Treatment related fluctuation

- To be considered in cases where there was initial improvement objectively by 1 grade in GBS disability score or by >/=5 in MRC grade scale within 4 weeks followed by reduction in the MRC score by > 5 and FDS by 1.
- The general view is that a TRF indicates wearing off the treatment effect while the inflammatory phase is still going on.
- These patient might benefit from repeating the treatment.

Step 9 : Predicting outcome. SB

- Most patients with GBS , even those who are tetraplegic at nadir or required mechanical ventilation show extensive recovery with in first year.
- Probability of regaining walking ability can be predicted by using mEGOS.
- Death can occur in 3-10% of cases , most commonly due to cardiovascular and respiratory complication.
- Risk factors for mortality include- advanced age and severe disease at onset.

Score (mEGOS) Prognostic factors	<u></u>	1 ~
rognostic juciors	Categories	Score
Age at onset	≤ 40	0
	41-60	1
	> 60	2
Preceding diarrhea	Absent	0
	Present	1
MRC sum score* at day 7 of hospital	60-51	0
admission	50-41	3
	40-31	6
14	30-0	9
mEGOS 0-12	(2)	
0-6 = Low risk (>90%)		
7-9 = Intermediate risk (70-85%)		
9-12 = High risk (40-70%)		
9-12 = High risk (40-7070)	tisting the abilit	to w

Supplementary table 3. Modified Erasmus GBS Outcome Score (mEGOS)

Recovery in Children with GBS AC

• Long-term Recovery:

- 85-92% achieve excellent recovery (symptom-free or minimal disability).
- 90% are ambulatory within 6 months; nearly all walk within 1 year.

• Residual Symptoms:

- 65% report sequelae (paresthesia, gait issues, fatigue).
- Long-term deficits: sensory loss (14%), limb weakness (8%), areflexia (5%).

• Risk Factors for Poor Recovery:

 Very young age (<2 years), severe weakness, rapid progression, cranial nerve involvement, ventilator support, and inexcitable motor nerves.

GBS Subtypes & Recurrence BKR

• GBS Subtypes:

- Favorable outcomes in both AIDP and AMAN subtypes.
- Delayed recovery more common in AMAN (80% walking within 6 months).

Recurrence & Fluctuations:

- Recurrence occurs in 2-5% of cases, months to years after the initial episode.
- Treatment-related fluctuations in up to 7%, usually responsive to immunomodulatory treatment.
- 2% may develop chronic inflammatory demyelinating polyneuropathy.

Step 10 : Planning rehabilitation SR

- Start rehabilitation programme early.
- Should aim to reduce disability in the early stages and later to restore motor and sensory function and physical condition to pre disease levels.
- Fatigue is found in 60-80% of patients with GBS and is often one of the most disabling complaints.
- Pain is reported in 1/3 of the patients of GBS 1yr after onset and persist for >10 yrs, characterized by muscle pain in lower back, arthalgias and radicular pain
- Early recognition and management of psychological distress is important as mental status can influence physical recovery.

